
SMART CONTRACTS EXPERTISE —
RIGHT WAY TO SUCCESS
CryptoBnB Smart Contract Audit

If you have any questions concerning
smart contract design and audit, feel
free to contact zoia@oceanico.io

2Oceanico.io \ zoia@oceanico.io

Description of the set of procedures
for auditing a smart contract

Terms of Reference for the creation of a smart contract

List of audited files

Review of smart contract #1

Review of smart contract #2

Review of smart contract #3

Review of smart contract #4

Review of smart contract #5

Review of smart contract #6

Review of smart contract #7

Results of contract audit

4

7

8

10

12

13

14

18

20

22

3

Сontents

3Oceanico.io \ zoia@oceanico.io

• Checking the architecture of the contract.

• Correctness of the code.

• Check for linearity, shortness and self-documentation.

• Static verification and code analysis for validity and the presence of syntactic
errors.

• Checking the code of the smart contract for compliance with the requirements of
the customer code logic, writing algorithms, matching the initial constant values.

• Identification of potential vulnerabilities.

• Control testing of a smart contract for compliance with specified customer
requirements.

• Running tests of the properties of the smart contract in test net.

1. Primary architecture review

Description of the complex of procedures
for auditing a smart contract

2. Comparison of requirements and implementation

3. Testing according to the requirements

4Oceanico.io \ zoia@oceanico.io

• Total CKey Tokens 1 billion

• 1 CKey=$ 0.08

• Token Sale to run for 90 days

• HardCap is $15.2 Million

• Minimum Cap $1.5Million

• Minimum Purchase is $75 (0.1 ETH)

• CKey token is ERC20

• Participants wallets must be ETH ERC20 compatible

• Tokens are bound to USD for the sale, as ETH fluctuates the amount of tokens
received changes not the price of the tokens.

• Participants will register on the Cryptobnb.io (no other website or mechanism is
promoted).

• After filling out the KYC form, the CryptoBnB team will vet all applicants. Team will
notify approval or rejection with ETH wallet address

• Upon successful ETH transfer a notification will be sent to applicant.

• Allocated tokens will be transferred to applicant’s wallet in maximum of one week.

• Tokens will be listed in major exchanges within 1–2 months from the tokens
dispatch date.

Terms of Reference for the creation
of a smart contract

ICO Crowdfunding Details:

Token Specs:

Token Dispatch and Listing

5Oceanico.io \ zoia@oceanico.io

Interested users provide their names, IDs, KYC info, email, and Ethereum address.

Token Distribution:

Data needed:

Tokens Disc Token Price

ICO T1 100,000,000 50% $0.0400

ICO T2 80,000,000 40% $0.0480

ICO T3 60,000,000 30% $0.0560

ICO T4 40,000,000 20% $0.0640

ICO T5 20,000,000 10% $0.0720

Final Price 100,000,000 $0.08

Total 300,000,000 100,000,000

Token Allocation

Reserve 22.50%

Token ICO 30%

Team 7.50%

Founders 20%

Advisors 2.50%

Bonuses Host 10.00%

Bonuses SP 5%

Bounties 2.50%

Sum 100%

Token Distribution Tier Model:

• Users register through KYC form in the cryptobnb.io website

• CryptoBnB Inc. will vet all applicants and award Tokens accordingly. Rejected
applicants will be notified.

• Users will be given the wallet address to send their ETH

• A smart contract will be generated creating 1 billion CKey

Smart Contracts Process:

6Oceanico.io \ zoia@oceanico.io

• The smart contract will have various pools/tranches for the Tokens as per Tokens
allocation plan

• Wallets of participants/teams/ founders will be allocated in the appropriate pool

• Smart contracts will be released to Mainnet

• Held u token will be left in escrow accounts

• Excess Tokens from each pool will be swept after ICO to a freezer account.

• 1% of frozen Tokens will be donated to an accredited cancer association done
manually

• CryptoBnB Inc. reserve the right to move tokens from one tier to another as they
deem needed.

• HardCap is set at $15 Million

• Minimum viable funds will be set at $5 Million, if the amount is not reached the
funds will be returned.

• Minimum purchase is 0.1 Ether.

• In the unlikely event of a total refund, gas to refund will be paid by the participant ,
the ether sent by them will become available for refund from the multisig wallet

• If there is a remainder of ethereum ETH left (dust) it will not be worth the gas to
send back, the crowdfunding will absorb it later.

• Shareholder and Founders will be able to trade on exchanges up to 50% of their
Tokens immediately, the remaining will be frozen for 12 months. Team Members will
have their Tokens frozen for 12 months.

• Reserve, Bonuses and Bounties can be traded in the exchange upon listing

7Oceanico.io \ zoia@oceanico.io

• BasicToken.sol

• CBNBCrowdSale.sol

• CBNBTeamWallet.sol

• CBNBToken.sol

• ERC20.sol

• ERC20Basic.sol

• Migrations.sol

• Ownable.sol

• SafeMath.sol

• StandardToken.sol

The following 10 .sol files were the object of the audit:

List of audited files

https://github.com/Cryptobnb/Smartcontracts

Github of the project

8Oceanico.io \ zoia@oceanico.io

1. Solidity 0.4.18 has to be used. This is the latest stable version with security fixes.

2. The modifier icoHasEnded checks both conditions: the cap is reached and time is
out. It has to use the ‘or’ operator.

3. The method RefundWithdrawal uses the modifier icoHasEnded. It checks if the
cap is reached. The next modifier is refundOnly that checks that minLimit is not
reached, so investors with the status New or Approved can never get a refund.
Investors with the status Denied can get a refund only if the cap reached and time
is out.

4. If the investor invests twice or more with the same address, its status resets to New
each time.

5. ValidPurchase checks that the cap is less or equal to weiRaised plus the transaction
value. It means that the last transaction volume should be exactly equal to the cap
minus weiRaised, in order to: 1) validPurchase to allow it 2) the cap to be reached.
The correct approach is to accept the transaction and return the delivery to the
investor if the transaction value plus weiRaised is greater than the cap.

6. The method buyTokens transfer all eth to multiSigWallet, so RefundWithdrawal
cannot return eth.

1. Check now >= icoStartTime makes no sense because the constructor set
icoStartTime to now.

2. The modifier ContractPaused checks that the contract is not paused. It shoud be
renamed ContractActive.

3. SaleTier.StartTime is never used, onTheWhitelist is never used.

Important:

Code quality:

Review of smart contract #1

https://github.com/Cryptobnb/Smartcontracts

CryptoBnB token review#1.

CBNBCrowdSale.sol

9Oceanico.io \ zoia@oceanico.io

4. 5*10**17 should be written as “0.5 ether” and switched to constant. 10**10 should
be switched to constant. 42 can be written as TIER_DURATION*TIER_COUNT, both
constants should be specified.

5. saleTier initialization should be written as a cycle. It reduces the chance of human
error in the code and makes the code shorter.

saleTier[i].price should be calculated as (3900 - 150 * i) * 10**18.

salesTier[i].endTime should be calculated as now + 7*i days.

Attention: 3900 is ‘token per eth’ value, while now price is ‘eth per token’. It
looks more clearly when‘token per eth’ is used every time. In this case, the
following improvements will be required: the calculation qtyOfTokensRequested,
buyTokensRemainingWei should use mult. The calculation remainingWei should use
div.

6. weiRaised has no initialization in the constructor.

7. The constructor has no check _teamAddress argument set to zero.

8. Convert zero to address when there is a check that an address is not zero.

9. The methods cleanup and finalize are both onlyOwner, and cleanup is internal, so
this modifier can be removed from cleanup.

10. The methods transferUnsoldICOTokens do not transfer anything, they only
calculate the amount of unsold tokens. It will be more appropriate to rename it
getCountUnsoldICOTokens. Also, 6 should be a constant.

10Oceanico.io \ zoia@oceanico.io

1. The method buyTokens has a modifier icoHasEnded, so it can never be executed. It
is highly recommended to create a modifier icoActive, that checks that weiRaised <
cap && and so on, and to use it with buyTokens.

2. The method buyTokens under some conditions returns delivery to

 multiSigWallet.transfer(msg.value);;

And sends msg.value to wallet:

 multiSigWallet.transfer(msg.value);

If (weiRaised.sub(cap) > 0), it will lead to a reversal, because the contract never
stores ether.

It is recommended to calc delivery for investor at the beginning of this method, if msg.
value+weiRaised > cap, and then work with msg.value.sub(delivery).

If the last token is sold, just add the remaining weis to the delivery, and transfer the
delivery to the investor, if it is greater than zero. In this way, no manual refund will be
needed.

3. The method buyTokens does not check the case when an investor tranfers such
a large amount that it covers not only the current tier, but one or more of the
subsequent tiers too. This is a hypothetical situation, but it is better to foresee it. A
good solution is to use a cycle here.

Important:

Review of smart contract #2

https://github.com/Cryptobnb/Smartcontracts

CryptoBNB token review #2

11Oceanico.io \ zoia@oceanico.io

1. The following variables are never used: lockTier, decimals.

2. It is good to create a constant ETH_DECIMALS = 10**18.

3. In the following line the comment ‘wei’ has to be

saleTier[i].price = (3900 - 150*i); //tokens per eth

4. The modifier contractPaused was not changed after the first review. It is
recommended to rename it contractActive because it checks that paused == false.

5. The following code is not needed, because enum in Solidity is uint8 internally, so
Status.New

== 0, and‘default value’ for any variable are always zeros:

if(investors[msg.sender].whitelistStatus != Status.Approved){

investors[msg.sender].whitelistStatus = Status.New;

}

6. In the method buyTokens, use TIER_COUNT here: if (tier <= 5){

7. cap.sub(weiRaised); does nothing. There is no assignment.

Code quality:

12Oceanico.io \ zoia@oceanico.io

1. If an already whitelisted investor buys tokens for the second time, the tokens
will not be automatically sent to the investor. So the owner will need to add this
investor to the white list one more time.

2. The modifier icoHasEnded was broken with the last commit, it’s recommended to
roll it back, remove this modifier from buyTokens, create a modifier icoActive:

require(weiRaised < cap && now < icoEndTime && calculateUnsoldICOTokens() > 0);

and use this modifier in the buyTokens method.

3. There are bugs in the calculation tokensSold during the transition to the next tier.
At first,

142 qtyOfTokensRequested = tierRemainingTokens;

where tierRemainingTokens is the remainder from the previous tier. Next,

148 qtyOfTokensRequested += buyTokensRemainingWei;

where buyTokensRemainingWei is tokens for a new tier. Finally,

160 saleTier[tier].tokensSold += qtyOfTokensRequested;

so the tokensSold value in the new tier will be the sum of tokens for both tiers.

4. A problem in the lines 162..169. If an investor is whitelisted, contrAmount will not be
increased. So the investor will not be able to get a refund. In fact, contrAmount has
to be increased regardless of the whitelist status.

5. Refund is impossible due to a reversal in the function ().

Important:

Review of smart contract #3

https://github.com/Cryptobnb/Smartcontracts

CryptoBNB token review #3

13Oceanico.io \ zoia@oceanico.io

1. Solidity 0.4.19 is released. It’s recommended to update the compiler and change
the pragma.

2. Tokens are transferable during the ICO. It’s recommended to add a ‘paused’
variable to CBNBToken and override the methods transfer and transferFrom to
check !paused || msg.sender==crowdsaleContract

3. It’s recommended to use a git submodule to include zeppelin-solidity to repository.
In the directory cryptobnb/contracts/ (the directory containing CBNBToken.sol)
run the following command:

$ git submodule add https://github.com/OpenZeppelin/zeppelin-solidity

This command will create a zeppelin-solidity directory. Do not add it to git with ‘git
add’. Next, add a dependency to repo:

$ git add ../.gitmodules

Change imports in CBNBToken.sol, CBNBCrowdsale.sol, CBNBTeamWallet.sol

import “./zeppelin-solidity/contracts/token/StandardToken.sol” and so on.

After push and pull/clone, the dependencies can be updated on another computer:

$ git submodule init && git submodule update.

This will enable an actual zeppelin-solidity that removes compiler warnings. All files
but CBNB*.sol can be removed from the contracts directory.

4. The method transferTeamTokens in CBNBTeamWallet.sol uses the bnbToken.trans-
fer- From(this, msg.sender, sendValue) method. It doesn’t work, so it’s recommend-
ed to use bnbToken.transfer(msg.sender, sendValue).

use bnbToken.transfer(msg.sender, sendValue).

Important:

Review of smart contract #4

https://github.com/Cryptobnb/Smartcontracts

Cryptobnb smart contract review #4

14Oceanico.io \ zoia@oceanico.io

1. When purchasing tokens, the owner of the Crowdsale contract usually purchases
tokens in which tokens are not actually credited to anyone, and the totalTokensSold
counter is incremented. In my opinion, this option is not necessary. I recommend
adding a check to the top of the method require(msg.sender != owner).

2. The buyTokens function contains errors. For example, in line 167, instead of
mul(price), there must be a div (price).

3. The price of the token is not recalculated when purchasing tokens from several Tier.

4. Due to the appearance of SaleTier storage tiers = saleTier[tier]; a new bug appears.
Now tiers (highlighted in the screenshot) is not a saleTier[tier], but saleTier[tier - 1]
because of tier++ in line 164. tiers did not point to saleTiers[tier++].

5. There remains another problem with the calculation of tiers.tokenSold. If you
purchased tokens of several Tier, you need to fill out the saleTiers[tier].tokensSold
before tokensToBeSold, saleTiers[tier + 1].tokenSold and so on.

Important:

Review of smart contract #5

https://github.com/Cryptobnb/Smartcontracts/

Cryptobnb smart contract review #5

15Oceanico.io \ zoia@oceanico.io

1. Miscellaneous indents (indents, getEtherPrice, pausedContract).

2. The brackets do not play any role in the calculation order (not only in this place,
there are many such examples in the whole project). They only make the code
cluttered. Recommend to remove.

3. It is customary to write function names lowercase.

4. decimals in the CBNBCrowdSale contract is initialized, but is not used anywhere.
decimals are needed in CBNBToken to implement ERC20, and it is not needed in
the crowdsale contract if it is not used anywhere in the code.

5. The purpose of the getTokenPrice method is not defined. Its functions are
duplicated by the getEtherPrice method.

1. Creating contracts

2. Simple purchase of several tokens. Check that you bought as many tokens as you
expected.

3. Buy tokens from Tier2. Check that the price of the token has changed
automatically.

4. Buying tokens is more than what is left to buy until the end of the stage (tier).
Checking that the tokens are credited, as expected.

5. Checking that finalize can not be called until the ICO is completed

6. Checking that finalize is possible to trigger after the sale of all the tokens

7. Prohibit the purchase of tokens. Check that the refund is working.

Code quality

Testing in testnet

Test scenario:

16Oceanico.io \ zoia@oceanico.io

1. Success
Deploying CBNToken, CBNBTeamWallet, CBNBCrowdSale in the Ropsten test
network.

Executing CBNToken.setCrowdsaleContract (CBNBCrowdSale.address),
CBNToken.approve (CBNBCrowdSale.address, 10000000000000000000).
All transactions passed without errors.

2. Failure
Purchase of buyTokens tokens by the owner of contracts for 0.2 ETH.
The transaction was successful, the totalTokensSold counter increased by
20’000’000’0000000000. This behavior is undesirable (see Important.1)

3. Success
Purchase buyTokens tokens from another address at 0.2 ETH.
The transaction was successful, the totalTokensSold counter increased by
20’000’000’0000000000. All as expected.

4. Success
Running whitelistAddresses (adddress, true). 20’000’000 reserved tokens were
transferred to the specified address.

5. Success
Purchase of remaining (in Tier1) 60’000’000 tokens. Sent by 0.6 ETH. The balance
of tokens replenished by 60’000’000 CKey.

6. Success
Check for automatic change in the price of tokens in Tier2.
Purchase of tokens at 0.2 ETH. Сredited 16’666’666 CKey.
The test showed that the token has a new price of $ 0.048.

7. Failure
Calculations show that, in order to buy the remaining 63’333’334 CKey in Tier2, you
need to pay 0.760000008 ETH. In Tier3, the CKey price of the token should be
$ 0.056.

Let’s try to buy 63’333’334 + 30’000’000 CKey for 0.760000008 + 0.42 ETH.
As a result, an extremely large number of tokens is reserved, the number of which
is accustomed to the maximum issue pledged in the contract.

Error in calculations. You can not continue testing (see Important.2-5)

Tests performed:

17Oceanico.io \ zoia@oceanico.io

As a result of the verification and testing of the smart contract in the Ropsten test
network, the following was identified:

- a number of insignificant comments related to the quality of the code does not
affect the work.

- сritical vulnerability. This vulnerability is highly unlikely under normal tokenail
conditions (see Important.2-5), does not affect the security of investor funds placed
on a smart contract, but in the event of an attack it can disrupt further tokenization.

18Oceanico.io \ zoia@oceanico.io

1. You should pass a block.timestamp or now instead of a block.number to the
setFreezeTime function and you should replace teamWallet in finalize with
bnbTeamWallet and remove unused teamWallet.

Important:

Review of smart contract #6

https://github.com/Cryptobnb/Smartcontracts/

Cryptobnb smart contract review #6

There are no comments or recommendations on the quality of the code.

Code quality

1. Creating contracts

2. Simple purchase of several tokens. Check that you bought as many tokens as you
expected.

3. Buy tokens from Tier2. Check that the price of the token has changed
automatically.

4. Buying tokens is more than what is left to buy until the end of the stage (tier).
Checking that the tokens are credited, as expected.

5. Checking that finalize can not be called until the ICO is completed

6. Checking that finalize is possible to trigger after the sale of all the tokens

7. Prohibit the purchase of tokens. Check that the refund is working.

Testing in testnet

Test scenario:

19Oceanico.io \ zoia@oceanico.io

Tests performed:

1. Success
Deploying CBNToken, CBNBTeamWallet, CBNBCrowdSale in the Ropsten test
network.

Executing CBNToken.setCrowdsaleContract (CBNBCrowdSale.address),

CBNToken.approve (CBNBCrowdSale.address, 10000000000000000000).

All transactions passed without errors.

2. Success
Purchase of buyTokens tokens by the owner of contracts for 0.2 ETH. The
transaction was successful.

3. Success
Purchase buyTokens tokens from another address at 0.2 ETH.

The transaction was successful, the totalTokensSold counter increased by
20’000’000’0000000000. All as expected.

4. Success
Running whitelistAddresses (adddress, true). 20’000’000 reserved tokens were
transferred to the specified address.

5. Success
Purchase of remaining (in Tier1) 60’000’000 tokens. Sent by 0.6 ETH. The balance
of tokens replenished by 60’000’000 CKey.

6. Success
Check for automatic change in the price of tokens in Tier2.

Purchase of tokens at 0.2 ETH. Accrued 16’666’666 CKey.

The test showed that the token has a new price of $ 0.048.

7. Success Buying tokens is prohibited. Refund works.

As a result of the verification and testing of the smart contract in the Ropsten test
network, it was revealed:

- an error that does not allow to call the Finalize function responsible for the
translation of TEAM tokens. If you do not remove it, the TEAM tokens will be blocked.

This error does not affect the safety of funds of investors placed under an intellectual
contract.

20Oceanico.io \ zoia@oceanico.io

1. After the transferTeamTokens function is added, the situation is now possible: the
owner calls the transferTeamTokens method before the completion of the ICO, the
tokens are added to the team’s wallet, but are not frozen (the freeze occurs during
finalization) and team members can withdraw funds from the wallet.

Important:

Review of smart contract #7

https://github.com/Cryptobnb/Smartcontracts/

Cryptobnb smart contract review #7

1. Checking minLimit and cap. minLimit = 1500 ETH. 1500 ETH at the current ether
price = $ 1.7 Million (and should be $ 1.5 Million). To increase the accuracy of
minLimit, you must pass the current ETH price to the constructor. But before the
end of the ICO course can change a lot, and then the minLimit will be too small or
too big and the organizers of the ICO will not raise enough funds. The same goes
for checking the cap.

2. LogWithdrawal (msg.sender, this.balance); // do we really want to broadcast the
tehis? - Yes, it is necessary to log all operations related to transfer of ETH and
tokens.

Comments

We tested the possibility of withdrawing funds from teamWallet before calling finalize
(see Important.1)

1. De-contracting, setting the price of ETH, running token.setCrowdsaleContract,
 teamWallet.setCrowdsaleContract, token.approve.

2. crowdsale.transferTeamTokens

3. token.activate

4. teamWallet.addMember (address, 1’000’000’0000000000)

5. teamWallet.transferTeamWallet (from address)

Testing in testnet

21Oceanico.io \ zoia@oceanico.io

As a result of the verification and testing of the smart contract in the Ropsten test
network, it was revealed:

- Checking the token balance shows that the tokens were transferred to the registered
team member, although finalize has not yet been executed. Tokens were not frozen.

This error does not affect the safety of funds of investors placed under an intellectual
contract.

22Oceanico.io \ zoia@oceanico.io

Results of contract audit

https://github.com/Cryptobnb/Smartcontracts

The information in this report is a list of tips and recommendations on what
to look for and what needs to be done to ensure the performance of a smart
contract.

OCEANICO experts conducted a smart contract audit in seven iterations.
Based on the results of each iteration, the developer’s developers were given
recommendations for eliminating errors committed while writing the code and
possible vulnerabilities of the contract.

During seven complete test run runs in the Ethereum test grid, all the errors
found were eliminated by the developer. This smart contract corresponds to the
specifications stated in the terms of reference and does not contain previously
identified code and vulnerabilities errors.

If changes are made to the functionality of the contract, please submit the
smart contract for re-examination to the OCEANICO experts
(zoia@oceanico.io).

